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A general method for the simultaneous calculation of the effect of inter- and intramolecular forces on 
crystal packing and lattice dynamics is described. The crystal energy is analytically represented as a 
function of the 3n Cartesian coordinates of the n atoms in the asymmetric unit and the 6 unit-cell param- 
eters. The equilibrium geometry and the lattice vibrations are consistently derived from the same crystal 
potential. The applicability of the method for both rigid and flexible molecules is demonstrated by cal- 
culations of benzene, biphenyl and fl-ionylidenecrotonic acid. The computer programs developed in this 
work are available. 

I n t r o d u c t i o n  

The calculation of lattice energies using semi-empirical 
l$otential functions has recently become a powerful 
tool for the determination of crystal packing. Several 
methods of calculation have been proposed (Williams, 
1972; Coiro, Giglio & Quagliata, 1972), and several 
crystal structures have been solved with the aid of such 
calculations (Ahmed & Kitaigorodsky, 1972; Coiro, 
Giglio, Lucano & Puliti, 1973). A limitation of the 
above-mentioned approaches is that the energy is 
considered to be dependent only on a limited number 
of degrees of freedom such as rotations and transla- 
tions of the asymmetric unit or rotations of parts of the 
molecule around certain bonds. Such a set of coordi- 
nates is too restrictive for the treatment of non-rigid 
molecules and is not adequate for the study of the 
coupling of inter- and intramolecular effects (e.g. the 
complete treatment of the lattice dynamics). This 
limitation was partially overcome by the treatment of 
Warshel & Lifson (1970), in which the energy was 
given as a function of the Cartesian coordinate of all 
the atoms in the unit cell and of the unit-cell param- 
eters. However, this method did not take advantage of 
the crystal symmetry and was therefore computa- 
tlonally restricted to lattices with one medium-sized 
molecule per unit cell. In the present paper we develop 
an extension of the Warshel & Lifson method which 
removes the above-mentioned serious limitation. This 
extension makes it possible to treat crystals with 
several symmetry-related molecules in the unit cell. 
Calculations can be carried out in the complete 
(3n + 6)-dimensional space, composed of the 3n Carte- 
sian coordinates of the n atoms in the asymmetric unit 
and the 6 unit-cell parameters, or in the restricted sub- 
space of rotations, translations and subrotations 
around single bonds. The Cartesian treatment permits 

consistent calculations of crystals of flexible mole- 
cules, where it is quite possible that small changes of 
bond angles from their 'standard values' are more 
efficient in the relaxation of steric repulsion than rota- 
tion or torsions. Furthermore, the Cartesian approach 
enables one to treat the lattice dynamics in a straight- 
forward manner. Thus it is quite easy to calculate 
simultaneously the complete set of inter- and intra- 
molecular normal modes and to evaluate the atomic 
thermal ellipsoid. The proposed scheme allows for the 
study of the effects of intermolecular forces on mo- 
lecular conformation (Warshel, Huler, Rabinovich & 
Shakked, 1974) and on the intramolecular normal 
modes (see below). 

In the next section of this paper we describe the 
method in detail. In the last section applications to 
rigid and flexible molecules are presented. 

M e t h o d  o f  c a l c u l a t i o n  

Energy minimization 
The energy per molecule, V, is expressed as the sum 

of the intermolecular interactions (which are re- 
presented by an atom-atom potential) and the intra- 
molecular energy. That is 

V : I  ~ ~ Vinter(rls,t "' it) 4- Vintr a 
t',s' t,l 

where 
r~,t,, R t 1~ = Ir(~;) + - r(1)l = Ir~(~ ;) - r (1 ) l .  

H e r e  R t is the translation vector which relates the l 
unit cell to a central unit cell and can be expressed as 
R~=LTz where 

[ill L12 L311 [,1] 
L =  L22 Ls2| T l= /3 • 

0 L33] /3 
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The L~j are related to the unit-cell parameters a, b, c, 
c~, fl, y, and the l, are integers, r(~) is the position vector 
(in the Cartesian coordinate space) of the atom t of 
the molecule s in the central unit cell. r(~) can be ex- 
pressed as a function of the coordinates of the atom t 
in the reference molecule ( s=  l) by 

r(~) = LO*L- lr(t) + LU s= o~r(;) + LW. 

The 3 x 3 matrix 0 s and the three-dimensional vector U s 
are respectively the rotational and translational part 
of the symmetry operation by which the molecule s is 
generated from the molecule 1. 

In its general form the crystal potential V is a func- 
tion of the 3n coordinates r(;) and the 6 components 
of L. These 3 n + 6  elements define a vector ~. The 
equilibrium geometry ~eq is evaluated by the mini- 
mization of V with respect to the components of 0. Since 
e has in general many components, it is imperative to 
utilize minimization techniques which employ the first 
and second derivatives of V. For every intramolecular 
or intermolecular interaction the first and second 
derivatives with respect to the corresponding com- 
ponents of ~ are computed analytically. In the case of 
intramolecular interactions (which of course do not 
depend on the unit-cell parameters) the computation 
of the derivatives is similar to that of Warshel & 
Lifson (1970). For an intermolecular interaction V ' =  
V(r~t, ~t) which is a function of the distance between the 

r (s) - ~ r(~ ) + L[U s + Tq atom atr(~ t ) and the atom at ' t '  _ s t, 

the first derivatives with respect to the coordinates of 
the corresponding atoms in the asymmetric unit are 
given by 

0V' .-. 0V' 
= _ 

-8rk(;~ 

and the second derivatives, by 

0 2 V  t O 2 V  ' 
= 

Or,(;')Orj(t') k,m Ork(;)Orm(;) 

The same intermolecular interaction depends on the 
unit-cell parameters, and the corresponding derivatives 
a r e  

0V' _ 0V' 
OL,j (U~ + TJ) Or,([) 

and 

,02 V'  ~2 V'  

OL,sOLkm - ( U  S + TJ) (U~,+ T~) Or,(;) Ork(;) " 

Mixed second derivatives are expressed as 

0 2 V  t 0 2 V  ' 

Ork(~')OL,j --(U~J + TJ) ~., a~, Ori(;)Orm(~) " 

The above analytical first and second derivatives are 
used for the minimization of the energy in the 3n+6  
multi-dimensional space of the vector ~. At the be- 

ginning O f the minimization procedure we employ the 
steepest-descent method, in which the steps toward the 
minimum are determined iteratively by 

AO= --KVQV 

where K is a scaling factor. Close to the minimum first 
derivative methods are not convergent. Therefore at 
that point we use the modified Newton-Raphson pro- 
cedure in which the quadratic estimate of the step 
toward the minimum is given by 

A0= --F+VQV 

where F + is the generalized inverse of the second- 
derivatives matrix. 

When the intramolecular force field is not known or 
the molecule is sufficiently rigid, a standard geometry 
can be assumed and the energy can be minimized with 
respect to the three translations and the three rotations 
of the molecule. The derivatives with respect to transla- 
tions and rotations are obtained by a simple transfor- 
mation of the previously computed derivatives in the e 
space. For a rigid molecule, r(;) can be expressed as 

r(1) = R(~o~, ~Oz, ~o3) [r°(;) - r°M] + rCM 

where r°(;) and r°u are respectively the initial position 
vectors of the atom t and of the centre of mass of the 
molecule. R(tpl, tp2, tp3) is the Euler matrix defined in the 
standard way (Goldstein, 1959). 

The derivatives with respect to the three translational 
degrees of freedom (T,) and the three rotational degrees 
of freedom (tp,) are given by 

and 

OV OV 
coT~ = ~ ?r ,( ;)  

0v  0v  0rk(;) 
O~0, = ~  ~ 0rk(;) O~0, 

where the O V/Ori(;) are the previously obtained deriva- 
tives and Ork(tx)/O~oi is obtained by differentiating the 
Euler matrix in the above expression for r(~). 

Second derivatives are expressed as 

OzV OEV 

-OTiOT j .,  Or,(;)Orj(tx ") ' 

02V 02V Ork(;) Orm(;') 
,,,, k,,, 0rk(~)0rm(;') 0tpt 0~0j 

OV 02rk(;) 
+ ~ ~ Ork(~) 3~o,O~oj 

and 

~2 V ~2 V 3rk(]') 

Minimization can also be carried out with respect to 
torsion of the molecule around given bonds. For a 
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torsion O~ around the bond formed by atoms i and i + 1 
the corresponding derivative is given by 

where 

OV OV c~rl,(]) 

- [nAr'(~)]k 
30~ 

n is a unit vector in the direction of the bond between 
a tom i and atom i +  1. r'(~) is the vector from atom i to 
a tom t. Of  course, only the atoms on one side of  the i, 
i + 1  bond are displaced when the minirnization is 
carried out in the space of the subrotations.  Second 
derivatives with respect to subrotat ions are calculated 
numerically f iom the first derivatives. 

Vibrational modes 

One of the advantages of the Cartesian treatment  is 
the possibility of  calculating the crystal normal modes 
using the same second derivative matrix employed in 
the minimization procedure (Warshel & Lifson, 1970). 
The vibrational frequencies of  the crystal are obtained 
for a given wave vector k from the secular equation 

I F ( k ) -  4z~2co2M] = 0  
where 

8zV 
[F(k)]st.s't" = ~ s z, s" exp ( i k .  Re) 

, &(t)c% (t') 

M is the diagonal matrix of  the atomic masses and co 
is the frequency. Since all the dynamical  degrees of  
freedom are included in the calculation the dimension 
of  the matrix F is 3no- where a is the number  of mole- 
cules in the unit cell. However, in our calculations we 
form the dynamical  matrix F from a set of o- square 
submatrices of  dimension 3n. Each of  these submatrices 
is calculated by considering the interaction of  one 
arbitrarily chosen molecule in the central unit cell with 
each one of the o- different types of molecules in the 
crystal. This method of calculating the F matrix saves 
computer  time and assures correct symmetry for the 
dynamical  matrix at any point in the Brillouin zone. 
The dynamical  equation can be solved for appropria te  
values of  k and the resulting eigenvectors can be used 
to calculate the atomic thermal ellipsoids. A more 
detailed study of  this type of  calculation will be given 
elsewhere. 

E x a m p l e s  

Some test cases are presented in this section in order to 
demonstrate  various features of  our computat ional  
scheme. The calculations were made using the potential 
surfaces of the quantum-mechanical  extension of  the 
'consistent force field' to conjugated molecules 
(Warshel & Karplus,  1972). These potential surfaces 
(referred to as QCFF/PI)  were obtained from a set of  
empirical energy functions and semiempirical integrals 
which were consistently fitted to a large set of equilib- 

r ium geometries, vibrational frequencies, atomization 
energies, excitation energies and crystal properties of  
conjugated and non-conjugated hydrocarbons.  

Benzene 

The benzene molecule has been treated both as a 
rigid and a non-rigid molecule. In the f ramework of  
the rigid-body approximat ion the crystal of  benzene 
(Pbca) possesses only three molecular degrees of  freedom 
(three rotations). The first and second derivatives with 
respect to the translational degrees of  freedom are 
zero, owing to crystal symmetry.  Several initial positions 
of  the molecule were chosen in order to examine the 
convergence of  the minimization procedure. Two of 
these initial positions are presented in Table 1 and Fig. 
1 together with the final position which is the same in 
all cases regardless of  the initial position. It can be 
seen from the table that the calculated minimum is close 
to the experimental results. In the case of a molecule for 
which diffraction data are known, the calculated min- 
imum should be an adequate starting point for a 
structure-factor refinement. 

Table 1. Initial and equilibrium Cartesian coordinates 
in the rigid-body minimization o f  benzene (A) 

ra and rB are two arbitrarily chosen initial set of coordinates 
which converge to the same final equilibrium position rcq. 
ArA and Arn are the distances between initial and final positions 
of the corresponding atoms. 

ra ArA rv Arn req rexp* 
C(1) x -0"115 1"164 -0"257 -0"446 

y -0"694 0"688 1"362 1"312 
z -1"195 2"36 0"308 1"61 -0"046 -0"047 

C(2) x -0"564 -0"056 -0"948 - 1"017 
y - 1"276 1"356 0"561 0"421 
z -0"014 2"07 0"324 1"30 0 " 8 5 8  0"858 

C(3) x - 0 " 4 4 4  - 1"229 - 0"692 -0"569 
y -0"578 0"664 -0"812 -0"902 
z 1" 195 0"44 0"008 1 "80 0 " 9 0 2  0"902 

H(I) x -0"217 2"091 -0"429 -0"773 
y - 1"217 1"208 2"443 2"356 
z -2"152 4"20 0"571 2"88 -0"083 -0"083 

H(2) x -0"999 -0"111 -1"694 -1"816 
y -2"274 2"415 0"986 0"735 
z -0"011 3"67 0"568 2"33 1"525  1"526 

H(3) x -0"797 -2"168 -1"229 -1"013 
y -1"036 1"189 -1"423 -1"583 
z 2"099 0"75 0"026 3" 19 1 "607 1 "607 

* From Bacon, Curry & Wilson (1964). 

Fig. 1. Initial (shaded atoms) and equilibrium (open atoms) 
molecular orientations for two different test cases of rigid- 
body minimization of the benzene crystal (see also Table 1). 
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Since benzene is a relatively rigid molecule the main 
interest in performing the calculation without assuming 
rigidity is to analyse the crystal effect on the intra- 
molecular  normal  modes (site effect and factor group 
splitting). In order to derive the set of normal  modes 
we applied the procedure which was described above at 
k = 0 .  Table 2 presents the calculated and observed 
splitting between the highest and lowest components  
of  the multiplets of  the infrared-active normal  modes 
of  benzene, which have been thoroughly  studied by 
Taddei,  Bonadeo, Marzocchi & Califano (1973). It can 
be seen that  the order of  magnitude of  the predicted 
splitting agrees well with the experimental results. 

Table 2. Calculated and observed splitting (in cm -1) 
between the highest and lowest components o f  the 
multiplets o f  the infrared-active modes o f  benzene 

Normal mode AVobs* Av .... 
v~t 26"3 11 "9 
v12 1-5 2"4 
v13 - -  2"2 
v14 3"5 0"5 
Vls 7"8 5"3 
v~6 14"5 14"9 
vl~ 12"8 24"0 
vl8 7"0 6"2 
v~9 5"4 2"9 
Vzo --  4" 1 

* Taken from Taddei, Bonadeo, Marzocchi & Califano 
(1973). 
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Fig. 2. Adiabatic potential surface for gaseous ( - - - - - - )  and 
crystalline ( - - - )  biphenyi) 

,) 

O oxygen 

Fig. 3. Numbering of the atoms of trans-fl-ionylidene-y-crotonic 
acid. 

Biphenyl 
Biphenyl is an example of  a flexible molecule which 

exhibits different conformat ions  in the crystal (Trotter, 
1961 ; Hargreaves & Rizvi, 1962) and in the gas phase 
(Bastiansen, 1949). In order to study the crystal effect 
we performed adiabatic minimizations both for the 
isolated (gas phase) molecule and for the molecule in 
the crystal. That  is, the torsional angle around the bond 
connecting the two phenyl rings was constrained to a 
given value while minimizing the energy with respect 
to all Cartesian degrees of  freedom. Our calculated 

Table 3. Observed and calculated structure of  
9,10-trans-fl-ionylidene-y-crotonic acid 

Numbering of the atoms and experimental data from Koch 
(1972). Lengths in/~,, angles in deg. 

Bonds Obs. Calc. 
C(1)--C(2) 1.559 1"546 
C(2)--C(3) 1"457 1.522 
C(3)--C(4) 1"517 1"525 
C(4)--C(5) 1.509 1.497 
C(5)--C(6) 1"359 1"370 
C(6)--C(7) 1.449 1 "497 
C(7)--C(8) 1"343 1-354 
C(8)--C(9) 1"435 1-479 
C(9)--C(10) 1.364 1"366 
C(10)-C(11) 1.423 1.459 
C(11)-C(12) 1"341 1"363 
C(12)-C(13) 1 "463 1 "439 
C(13)-O(1) 1"224 1"246 
C(13)-O(2) 1"306 1-318 
C(I)--C(16) 1.532 1.538 
C(1)--C(I 5) 1-548 1-538 
C(5)--C(14) 1.521 1.504 
C(9)--C(17) 1"496 1.496 

Bond angles 
C(1)--C(2)--C(3) 114.0 113-0 
C(2)--C(3)--C(4) 110.0 109.5 
C(3)--C(4)--C(5) 113.5 111.7 
C(4)--C(5)--C(6) 124.5 124.5 
C(5)--C(6)--C(1) 120.9 121.9 
C(5)--C(6)--C(7) 118.3 117.0 
C(6)--C(7)--C(8) 131.9 127.6 
C(7)--C(8)--C(9) 125.8 123.7 
C(8)--C(9)--C(10) 118.6 119.9 
C(9)--C(10)-C(11) 126.6 125-2 
C(I 0)-C(11 )-C(12) 124.4 121.2 
C(11)-C(12)-C(13) 121.7 124.2 
C( 12)-C( 13)-O( 1 ) 122.6 124.8 
C(I 2)-C(13)-0(2) 115.2 1 ! 6-9 

Torsional angles 
C(6)-C( 1 )-C(2)-C(3) - 46" 1 - 45" 3 
C( 1 )-C(2)-C(3)-C(4) 61.0 61-4 
C(2)-C(3)-C(4)-C(5) - 42.6 - 46.8 
C(3)-C(4)-C(5)-C(6) 12.2 21.3 
C(4)-C(5)-C(6)-C(1) 2.5 6.3 
C(5)-C(6)-C(7)-C(8) 169.0 158.0 

Unit-cell parameters 
a 10-391 10"251 
b 13 "481 13"269 
c 7"546 7-357 
0c 108"12 109"02 
,8 127.81 128.35 
7 68"01 67"05 
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adiabatic potential surfaces for the crystal and the gas 
phase are presented in Fig. 2, where each surface is 
given relatively to its own minimum. The energy of the 
crystal (corrected for the zero-point energy of the 
lattice modes) is 18-7 kcal lower than that of the gas. 
This is in good agreement with the measured sublima- 
tion energy of biphenyl (18.1 kcal: Aihara, 1959). It 
can be seen from Fig. 2 that while the minimum in the 
crystal is at the planar conformation, the gas-phase 
minimum is at ~ 30 °. We believe that no significance 
should be attributed to the difference between this 
value and the value of ,,.,40 ° obtained from electron- 
diffraction measurement (Bastiansen, 1949), as the 
gas potential surface is very shallow (see Fig. 2). The 
correct thermal population has to be taken into ac- 
count before comparing the location of the minimum 
with the average value observed in the electron- 
diffraction experiment. In crystalline biphenyl, on the 
other hand, the torsional potential is much steeper and 
the molecular conformation is well determined by the 
intermolecular forces. 

9, l O-trans-fl-Ionylidene-7-crotonic acid 
This molecule belongs to the class of flexible con- 

jugated molecules in which the interplay between 
steric repulsion and conjugation energy determines the 
equilibrium geometry. Unlike biphenyl the molecule 
does not possess intramolecular symmetry elements. 
The potential surface of this molecule cannot be 
described by one adiabatic coordinate since there are 
several coupled torsional coordinates. In this case the 
conjugation energy must be calculated consistently 
since one cannot assume the same torsional potential 
for torsions around single bonds with different bond 
orders. Our QCFF/PI gives the conjugation energy 
consistently and provides the analytical derivatives of 
the quantum-mechanical rc energy. This permits fast 
minimization of the crystal energy with respect to the 
complete set of independent variables. In Table 3 the 
calculated equilibrium geometry is compared with the 
corresponding observed structure (see Fig. 3 for the 
numbering of the atoms). It can be seen that the cal- 

culated results reproduce quite well the observed de- 
viations of the C-C-C bond angles from the standard 
value of 120 °. Of course, this type of relaxation cannot 
be reproduced by methods which consider only tor- 
sional degrees of freedom. 

The MCA computer program 

The method which is described in this paper pro- 
vides a tool for the evaluation of equilibrium geom- 
etries and vibrational normal modes in molecular crys- 
tals. A program (named Molecular Crystals Analysis, 
MCA) based on this method was written in Fortran IV. 
The program is written in such a way that it uses 
directly the intramolecular potential surfaces which are 
provided by the QCFF/PI program. The program 
packages which include the MCA and the QCFF/PI 
programs are available upon request from the authors. 
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